Effect of diameter of nanoparticles and capture cross-section library on macroscopic dose enhancement in boron neutron capture therapy
نویسندگان
چکیده
PURPOSE The aim of this study is evaluation of the effect of diameter of (10)B nanoparticles and various neutron capture cross-section libraries on macroscopic dose enhancement in boron neutron capture therapy (BNCT). MATERIAL AND METHODS MCNPX Monte Carlo code was used for simulation of a (252)Cf source, a soft tissue phantom and a tumor containing (10)B nanoparticles. Using (252)Cf as a neutron source, macroscopic dose enhancement factor (MDEF) and total dose rate in tumor in the presence of 100, 200, and 500 ppm of (10)B nanoparticles with 25 nm, 50 nm, and 100 nm diameters were calculated. Additionally, the effect of ENDF, JEFF, JENDL, and CENDL neutron capture cross-section libraries on MDEF was evaluated. RESULTS There is not a linear relationship between the average MDEF value and nanoparticles' diameter but the average MDEF grows with increased concentration of (10)B nanoparticles. There is an increasing trend for average MDEF with the tumor distance. The average MDEF values were obtained the same for various neutron capture cross-section libraries. The maximum and minimum doses that effect on the total dose in tumor were neutron and secondary photon doses, respectively. Furthermore, the boron capture related dose component reduced in some extent with increase of diameter of (10)B nanoparticles. CONCLUSIONS Based on the results of this study, it can be concluded that from physical point of view, various nanoparticle diameters have no dominant effect on average MDEF value in tumor. Furthermore, it is concluded that various neutron capture cross-section libraries are resulted to the same macroscopic dose enhancements. However, it is predicted that taking into account the biological effects for various nanoparticle diameters will result in different dose enhancements.
منابع مشابه
10B Concentration, Phantom Size and Tumor Location Dependent Dose Enhancement and Neutron Spectra in Boron Neutron Capture Therapy
Background: The amount of average dose enhancement in tumor loaded with 10B may vary due to various factors in boron neutron capture therapy.Objective: This study aims to evaluate dose enhancement in tumor loaded with 10B under influence of various factors and investigate the dependence of this dose enhancement on neutron spectra changes.Material and Methods: In this simulation stud...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کاملDosimetry Impact of Boron and Its Carriers Structure at Boron Neutron Capture Therapy of a Brain Tumor; A Sim- ulation Study
Introduction: Boron neutron capture therapy (BNCT) is a method of cancer treatment and potentially, two borono-L-phenylalanine (BPA) and sodium borocaptate (BSH) are used in BNCT as common boron carriers. Some previous studies have shown that the dose rate is directly related to boron concentration in the tissue. This study aimed to simulate the structure of boron carriers and brain tumor compo...
متن کاملInvestigation the potential of Boron neutron capture therapy (BNCT) to treat the lung cancer
Introduction: Boron neutron capture therapy (BNCT) is recommended to treat the glioblastoma tumor. It is well known that neuron beams are more effective treatment than photon beams to treat hypoxia tumors due to interaction of neutron with nucleus and production of heavy particles such as 7Li and alpha particle. In this study to evaluate the suitability of BNCT for treating of ...
متن کاملAn investigation into the potential applicability of gel dosimeters for dosimetry in boron neutron capture therapy
Background: The aim of this work was to establish how well gel dosimeters performed, as substitutes for brain tissue compared with standard phantom materials such as water, polymethyl-methacrylate (or PMMA), A150 plastic and TE- liquid phantom material for dosimetry of neutron beams in boron neutron capture therapy. Materials and Methods: Thermal neutron fluence, photon dose and epithermal neu...
متن کامل